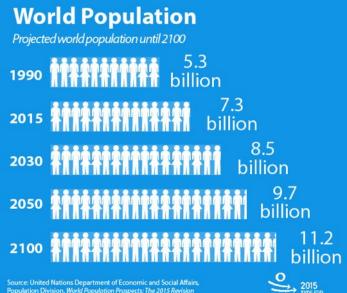
Food Reporting

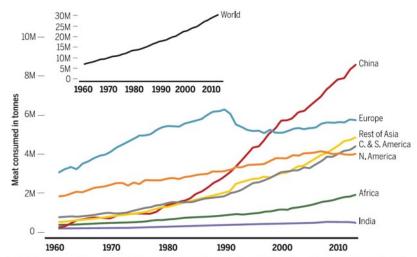
SUSTAINABILITY INDICATOR MANAGEMENT & ANALYSIS PLATFORM

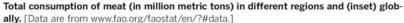
Allison Leach & Jennifer Andrews

Libby Dukes

Outline

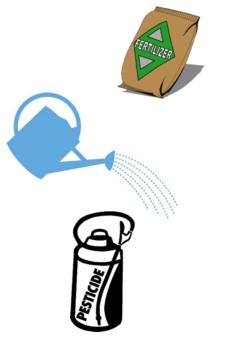

- 1. Why food reporting matters
- 2. How to determine the campus food footprint using SIMAP
- 3. A case study at the University of Virginia


1) Why food reporting matters



Food is central to life, health, culture, & quality of life

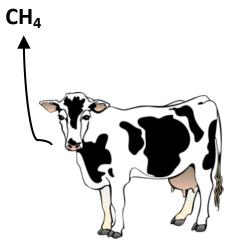
Population Division *World Population Proceedings* Produced by: United Nations Department of Public Information



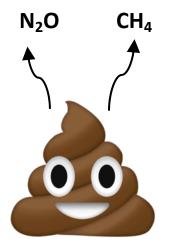
Global meat consumption is increasing on a total and per capita basis.

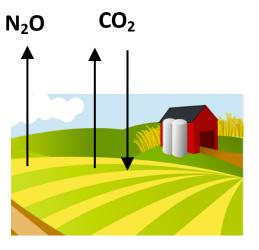
The environmental impacts

How does food production impact the environment?



- Greenhouse gas emissions
- Nutrient pollution
- Biodiversity loss
- Land use
- Freshwater consumption


In this webinar, we will focus on the first two: the carbon and nitrogen footprint of food.


Sources of GHGs from food production

Enteric fermentation (cow burps)

Manure management

Soil respiration

On a global scale, <u>deforestation</u> is a large source of GHGs

IPCC Special Report: Climate Change and Land

Climate change is making a challenging situation worse and undermining food security.

Agriculture, food production, and deforestation are major drivers of climate change.

Climate Change and Land

An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems

Summary for Policymakers

WGIXWGIIXWGII

IDCC In react on climate charge CONTROL UNEP

Nutrient pollution: Nitrogen and phosphorus

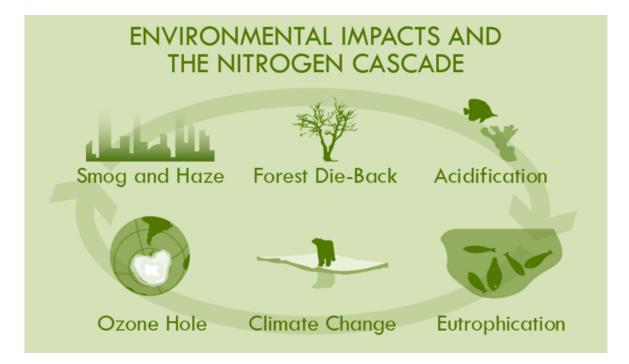
We need nutrients (e.g., nitrogen, phosphorus) to grow crops...

...But those same nutrients cause environmental pollution

Nutrient sources

Phosphorus

Nitrogen


Biological N fixation

Haber-Bosch process

Mining And reserves are limited and concentrated

Or from recycling! For example: Manure, compost, crop residue

Nitrogen pollution: Impacts

Agriculture more directly causes soil quality and water quality impacts, but it can indirectly cause all of these impacts through the nitrogen cascade.

Image: Andrew Greene

Summary: Why food reporting matters

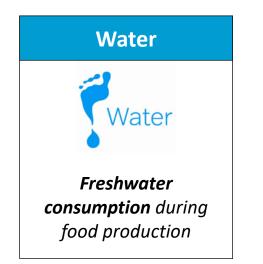
Because we want to maintain the benefits of our modern agricultural system

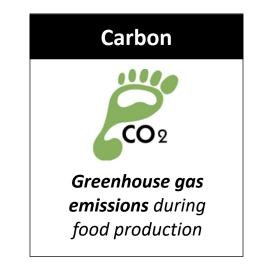
- Producing more food than ever before
- Agricultural technologies improve resource efficiency
- Intensification saves land

... But we have to address many challenges to ensure that it is sustainable and just

- Alleviate rural poverty
- Improve diets and health
- Preserve resources for future generations
- Address climate change

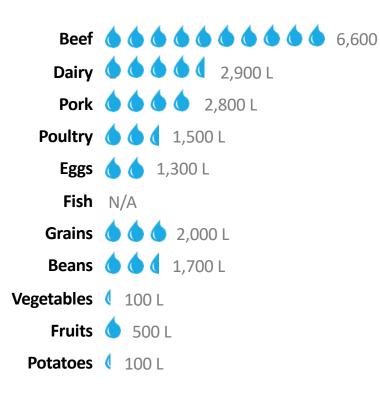
Challenge:


Produce enough healthy food while minimizing environmental damage.


Comparing across food footprints

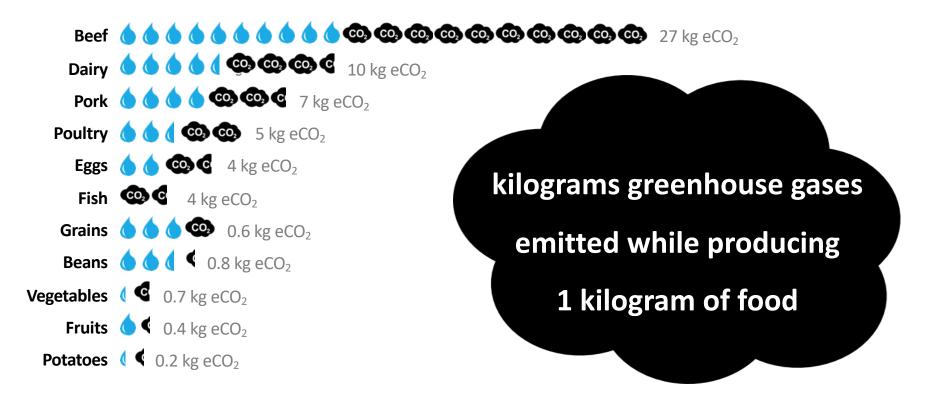
What is a footprint?

= The pressure on the environment from resource consumption



Nitrogen pollution losses during food production

Water footprint of food

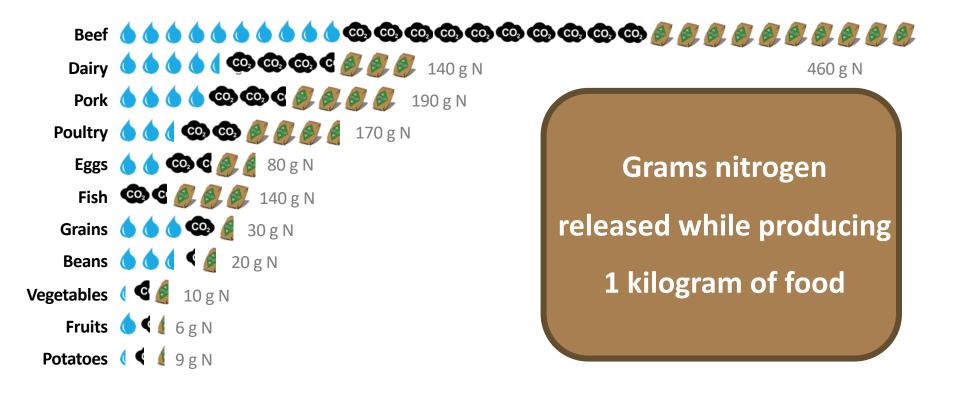

Liters of freshwater required to produce 1 kilogram of food

Water (L)

For 1 kg food

Leach et al. 2016, updated

Water + carbon footprint of food


For 1 kg food

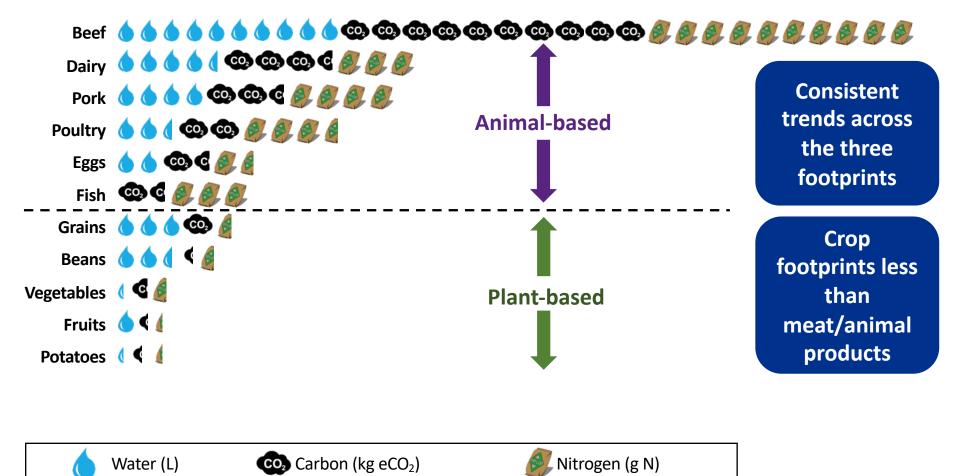
Leach et al. 2016, updated

Cop Carbon (kg eCO₂)

Water (L)

Water + carbon + nitrogen footprint of food

Nitrogen (g N)


 CO_2 Carbon (kg eCO₂)

Water (L)

For 1 kg food

Leach et al. 2016, updated

Water + carbon + nitrogen footprint of food

For 1 kg food Leach et al. 2016, updated

How do alternative systems compare?

	Intensive/Conventional	Extensive/Organic
Yields:	More productive per input	Less productive per input
Land:	Less land required	More land required
Emissions:	Lower emissions intensity	Higher emissions intensity
Environmental:	Concentrated pollution	More soil organic matter Less concentrated pollution

Take-away: Alternative farming practices help and are part of the solution, but they are not as effective as dietary shifts.

Improved biodiversity

Opportunities for reductions

Shift diets

Limited intake

Starchy **Red meat**

vegetables

Optional foods

Poultry

Dairy foods

Emphasized foods

Eat Lancet Commission's Report

Reduce food waste

ENVIRONMENTAL WASTE

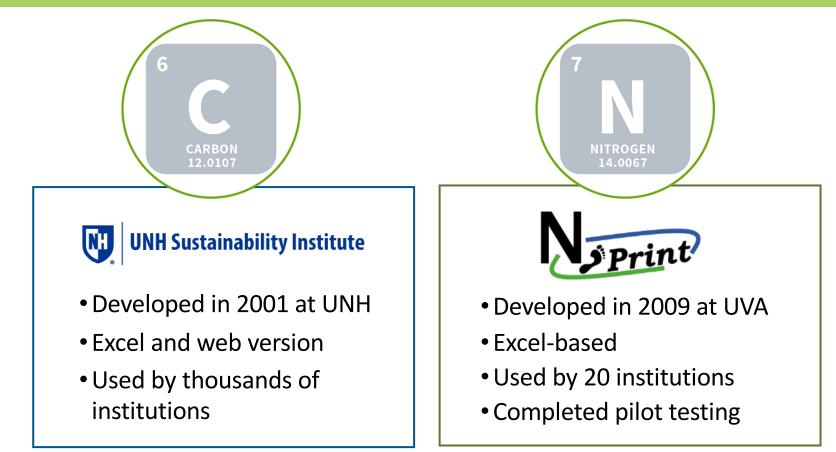
FINANCIAL WASTE

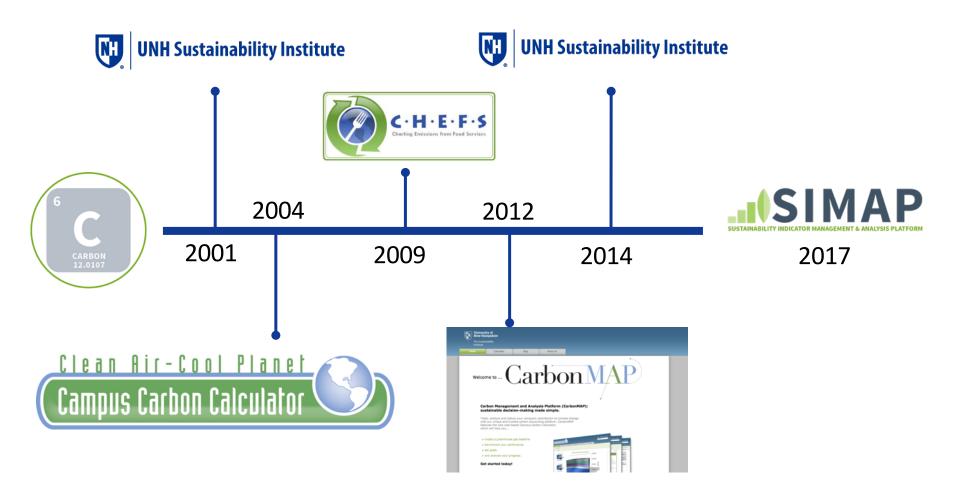
WORLD RESOURCES INSTITUTE

Opportunities for reductions

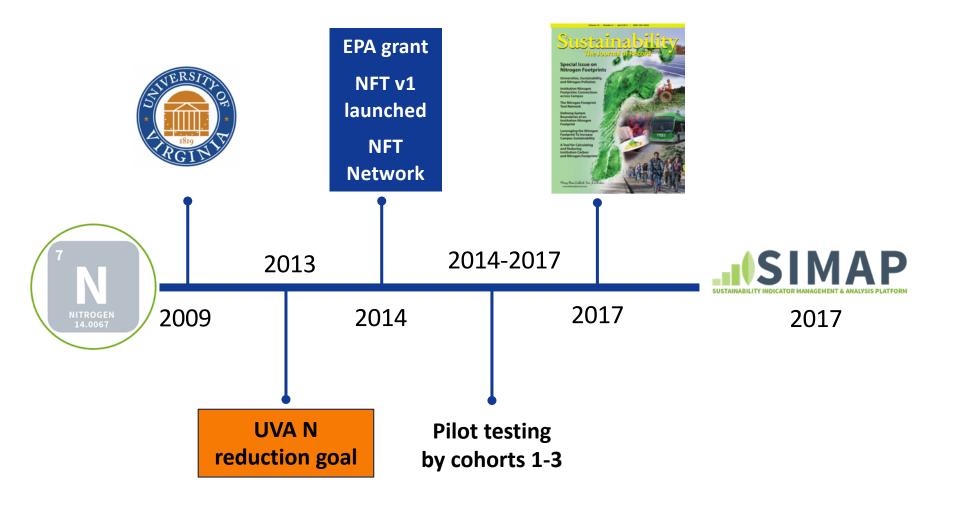
How do we make progress on our campuses?

"You can't manage what you don't measure."


2) How to determine the campus food footprint using SIMAP


What is SIMAP?

A carbon and nitrogen accounting platform that can track, analyze, and improve your campus-wide sustainability



How did we get here? *Carbon*

How did we get here? *Nitrogen*

Why a new tool?

1	Broader picture of environmental impacts		U-U-U-U-U-	4.
2	Single tracking tool	Carbon	Food Energy	Nitrogen
3	Integrate with other reporting platforms	😂 Secon	d Nature	<i>Others in the future</i>
4	Research about data trends	Carbon		Carbon Carbon
5	UNHSI's ability to support the tool	SUSTAINA		IAP NT & ANALYSIS PLATFORM

HOME **1. ACCOUNT** 2. DATA ENTRY 3. RESULTS DATA MGMT ABOUT

RESOURCES

SIMPLIFYING SUSTAINABILITY DECISIONS

SIMAP[®] is a carbon and nitrogen-accounting platform that can track, analyze, and improve your campus-wide sustainability. Our proven algorithms, based on nearly two decades of work supporting campus inventories with the Campus Carbon Calculator, CarbonMAP and Nitrogen Footprint Tool, will help you:

REPORTS

- Create a baseline
- **Benchmark your performance**
- Create reports
- Set goals ٠
- Analyze your progress year over year

GET STARTED!

CO2 emissions from generating power, treating waste, daily commuting, and even the use of paper, contribute to a campus' carbon footprint. Reducing these greenhouse gas emissions will help slow the effects of climate change and global warming.

Reactive nitrogen can result from everyday activities like food service, energy use, transportation, and ground fertilizer. Reducing your nitrogen footprint can provide benefits to air and water quality, while helping prevent climate change.

SUBSCRIPTION TIERS

While SIMAP offers basic functionality at no cost, we also offer two premium subscription levels that provide additional features at a nominal license fee. Our model allows UNH to cover the costs of continuing to offer and support this tool for the good of the entire campus-based sustainability community.

NEWSFEED

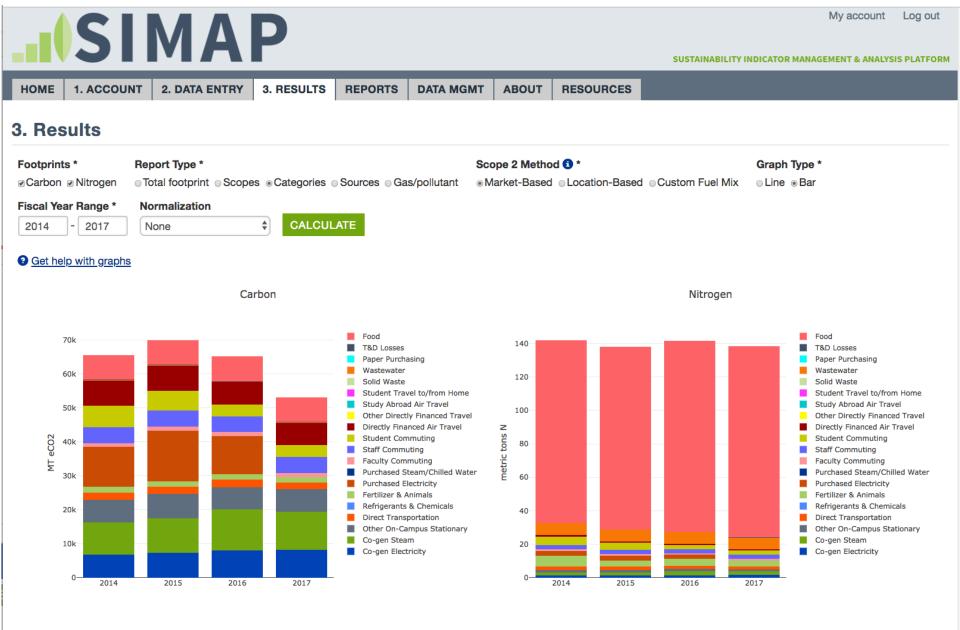
Graphs are now interactive! Check them out on the results tab and review the user guidance for how to use them.

SUSTAINABILITY INDICATOR MANAGEMENT & ANALYSIS PLATFORM

SIMAP data review appointment request and data review document are on our Support page.

Thank you for taking the survey and for your feedback about what is working and what could be improved. We are analyzing the results now and will provide communications on what the development priorities will be and the timelines. We really appreciate your feedback!

"The Nitrogen Footprint Tool for Universities" webinar presented on 6/27/18


New and simpler data collection template now available!

Please read this new guidance on the updated Scope 2 market-based purchased electricity calculations with residual emissions factors.

Check out the FAQs and changes and updates.

Training Webinar Accounting for Renewable Energy in SIMAP: Recording posted on the training page.

CarbonMAP users can still request your data HERE.

Ca	rbo	on	

Fiscal Year	Scope	Source	CO2 (kg)	CO2 (MTCDE)	CH4 (kg)	CH4 (MTCDE)	N2O (kg)	N2O (MTCDE)	GHG MTCDE
2014	1	Co-gen Electricity	6,840,038	6,840.04	701	17.52	17	4.98	6,862.53
2014	1	Co-gen Steam	9,377,846	9,377.85	961	24.02	23	6.82	9,408.69

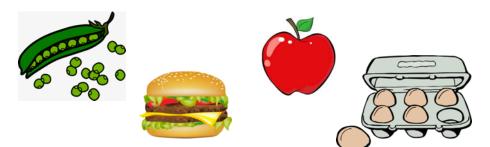
Entering food data in SIMAP

- 1. Food data collection and processing
- 2. Entering food data in SIMAP
- 3. Using the results

NFT Network

Food data collection and processing

Request purchase records


Categorize items & calculate weights

ITEM	BRAND	DESCRIPTION	PK	SIZE	QTY
337045	WEST CRK	EGG WHL W/CITRIC BNB TFF	1	20 LB	5264
362013	WEST CRK	FRUIT SALAD DLX ORANGE GRAPE	1	8 LB	3724
293477	ROMA	BEEF SIRLOIN STK PHILLY SLCD FZ	2	5 LB	3622
310503	ASSOLUTI	CHICKEN TNDRLN BRD PAR FRIED	2	5 LB	3099
158754	WEST CRK	CHICKEN TNDR JUMBO CLPPD CVP	4	10 LB	2740
904599	NLS NEST	EGG BRWN LG CAGE FREE	1	15 DZ	2607
276878	APPLAUSE	CHICKEN BRST NUGGET BRD FC FZ	2	5 LB	2303
861588	STONY	YOGURT STRWBRY LF ORGANIC BULK	6	32 OZ	2270
247412	WEST CRK	BEEF PATTY 5/1 GRND 80/20 FZ	50	3.2 OZ	2208
950233	STONY	YOGURT FRNCH VANILLA ORGANIC NF	6	32 OZ	2119
310514	ASSOLUTI	CHICKEN BRST STRIPS FC GRILL	2	5 LB	2109
882098	OLD CAL	SAUCE MARINARA FCY POUCH	6	106 OZ	1862
38268	TYSON	CHICKEN BRST PATTY HS FC CN FZ	60	3.53 OZ	1754
264197	ROMA	SAUCE ALFREDO RTU TFF	4	80 OZ	1612
53381	GOLD MED	FLOUR FULL STRENGTH TFF	1	50 LB	1494
197448	WEST CRK	CHICKEN DICED WHI & DARK FC 1/2	1	10 LB	1475
993262	SLVR SRC	CORN CUT YLW	1	20 LB	1398
259374	DOLE	STRAWBERRIES DICED IQF	2	5 LB	1314
887415	SLVR SRC	CHICKEN TNDRLN FRITTER BRD FZ	1	10 LB	1303
890881	STONY	YOGURT BANANA VANILLA ORGANIC	6	32 OZ	1280
29137	LAMBSEAS	FRIES CRISSCUT SEASND	6	4.5 LB	1249
85236	TYSON	CHICKEN POPCORN BITE ORGNL RTC	2	5 LB	1217
51380	HEINZ	KETCHUP VOL-PAK TFF	1	3 GA	1208
320328	ROMA	CHEESE MOZZ WM PROV WHI CHED	6	5 LB	1179
395018	PACKER	BEEF FOR STEW CH FZ	2	5 LB	1159
43045	MIN MAID	JUICE ORANGE CONC 5+1	4	90 OZ	1091
52221	AUNT JEM	FRNCH TOAST STICKS OVENABLE FZ	2	5 LB	1035
39276	SNDW MKR	TURKEY BRST	2	9.71 LB	1011
76957	TYSON	CHICKEN WING JUMBO APPROX 105	2	5 LB	931
307212	PIERCE	CHICKEN BRST NUGGET BTTRD FZ	2	5 LB	929

18 food categories

Calculate weights, for example:

20 lb/pack x 5264 packs purchased = 105,280 lb eggs

Guidelines are available on the SIMAP resources tab

SIMAP

HOME	1. ACCOUNT	2. DATA ENTRY	3. RESULTS	REPORTS	DATA MGMT	ABOUT	RESOURCES
1 R		food data e	entry:	2 OPT	IONAL foc	od data	entry:
• La • Fo • W	ate range abel (descrip ood category /eight nit (kg, lb)	•		 Orgar Local Food Dollar 	category 2 & rs dence level	& 3 (multi	i-ingredient)

3

FOOD SCALING FACTORS

For more information:

- User's Guide (Resources tab)
- Food Template (Resources tab)

Two options for entering food data into SIMAP:

1) Enter food data manually into SIMAP

SCOPE 1	Add Food
Stationary Fuels	Home / Food Data / Add
Cogen Efficiencies and	
Outputs	Date Range *
Transport Fuels	2016-07-01 2017-06-30
Fertilizer	E.g., 2018-10-09 E.g., 2018-10-09
Animals	Label *
Refrigerants & Chemicals	
SCOPE 2	Weight *

2) Import food data collection template

Food data er	ntry									
*Required field	l in SIMAP									
MM/DD/YYYY	MM/DD/YYYY	Text entry	Number	kilogram, pound, or US gallon	Yes or No	Yes or No	Select from drop-down	Select from drop-down	Select from drop-down	
Start date*	End date*	Label*	Weight*	Unit*	Organic	Local	Category 1*	Category 2	Category 3	

Download on 'Resources' tab

SIMAP

HOME 1. ACCOUNT

2. DATA ENTRY

TRY 3. RESULTS

Food Conversion Factors

REPORTS

DATA MGMT

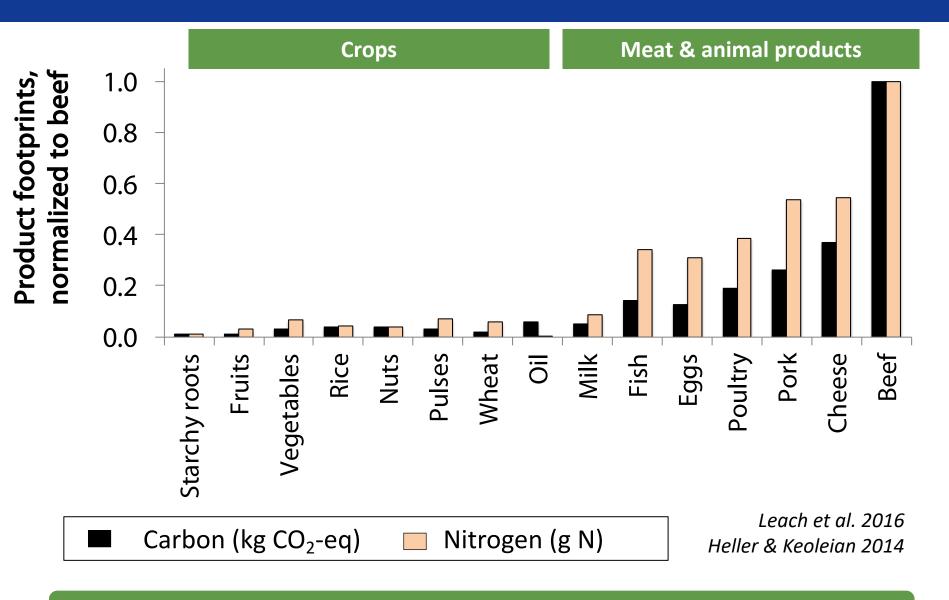
MGMT ABOUT

RESOURCES

Version: 2017

SCOPE 1

Stationary Fuels -


- Cogen Efficiencies and Outputs
- Transport Fuels
- Fertilizer
- Animals
- **Refrigerants & Chemicals**
- **SCOPE 2**
- Utility Consumption
- Renewable Energy
- SCOPE 3
- Commuting Business Travel & Study Abroad
- Student Travel to/from Home
- Food
- Paper
- Waste & Wastewater
- SINKS
- Compost Non-Additional Sequestration Offsets
- CALCULATION FACTORS
- Emission Factors
- Food Conversion Factors

This table provides conversion factors used in the food calculations. The nitrogen content is based on the

This table provides conversion factors used in the food calculations. The nitrogen content is based on the protein content of food (protein is 16% nitrogen), "Conventional" describes the food production nitrogen loss factors used for organic food, "Miles" describes the average number of miles that food type travels to be consumed, "Waste" is the average % of food waste by food category, and "Truck capacity" is used to calculate how many trips are necessary to deliver your food. These factors cannot be edited in the current version of SIMAP, but please let us know if you would like to modify any of them.

Food Category	Nitrogen Content	Conventional virtual N factor (kg N loss / kg N food)	C footprint (kg eCO2 / kg food)	Food transport distance (miles)	Local food transport (miles)	Food waste	Truck capacity (kg
Meat: Chicken	0.02782	4.2	5.05	950	250	0.15	22700
Meat: Pork	0.02825	4.7	6.87	950	250	0.15	22700
Meat: Beef	0.02916	11.3	26.45	950	250	0.15	22700
Dairy & eggs: Milk	0.00633	3.1	1.34	250	250	0.15	22700
Dairy & eggs: Eggs	0.01855	3.3	3.54	250	250	0.15	22700
Dairy & eggs: Cheese	0.03010	3.1	9.78	250	250	0.15	22700
Seafood: Fish	0.02871	2.5	3.83	950	250	0.39	22700
Vegetable products: Liquids	0.00144	3.4	1.03	800	250	0.37	22700
Vegetable products: Sugars	0.00051	3.4	0.93	800	250	0.37	22700
Vegetable products: Coffee and tea	0.01640	3.4	0.36	800	250	0.37	22700
Vegetable products: Potatoes	0.00359	1.4	0.21	1500	250	0.35	22700
Vegetable products: Beans	0.01442	0.41	0.78	1500	250	0.05	22700
Vegetable products: Oils	0.00059	0.41	1.63	800	250	0.05	22700
Vegetable products: Grains	0.01482	0.93	0.86	1350	250	0.28	22700
Vegetable products: Vegetables	0.00284	2.8	0.73	1500	250	0.37	22700
Vegetable products: Spices	0.00881	2.8	0.73	800	250	0.37	22700
Vegetable products: Nuts	0.02969	0.41	1.17	1500	250	0.05	22700

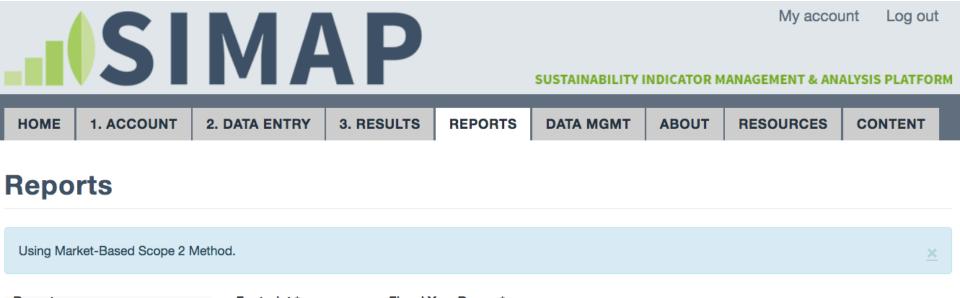
Emissions factors for food

Consistent trends across C & N footprints

Tips for collecting your food data set

- Do you have other relevant data sets (e.g., AASHE STARS, Real Food Challenge)?
- **Dining manager**: Have multiple meetings with your dining manager.
- System bounds: Food data sets can be large! Scale a smaller data set, such as:
 - % of purchases (if \$ is available)
 - A shorter time period (Ideally at least 2 months)
 - Major dining locations

Tips for processing & entering food data set


Calculate food weights using:

- Information in the purchase records
- Online resources, such as: USDA Food Composition Database
- Ask us! We have common conversion factors.

Using the food uploader:

- **Do not change the uploader:** Changing the template can result in upload issues.
- **Correct errors**: Correct any that are noted in SIMAP after upload. A common error is a duplicate text label; all text labels must be unique.
- **Confirm it uploaded**: Compare your total food weight in your data set to the total food weight in the Food Report (Reports tab).
- Delete data: If you need to start over, delete your food data set on the Data Mgmt tab.

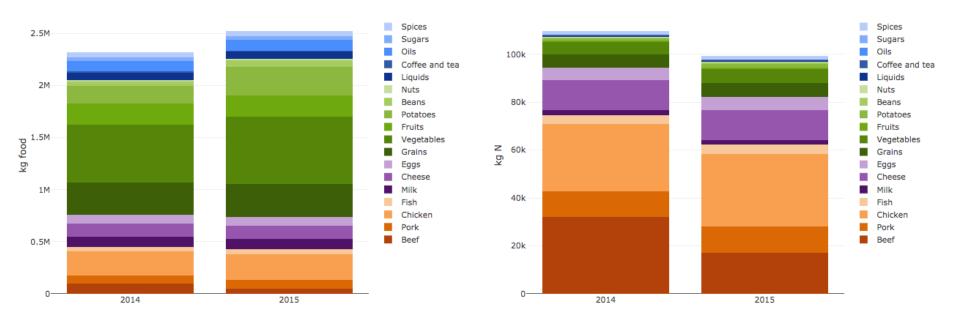
All-new SIMAP Food Report

 Report
 Footprint *
 Fiscal Year Range *

 Annual Report

 Carbon
 Nitrogen
 2014
 2015

 More information on the Food Report


 Annual Report
 Carbon
 Nitrogen

Select the food report option on the SIMAP Reports tab

All-new SIMAP Food Report

Food weight

Nitrogen footprint

Results shown by category and are grouped by colors: Meat (orange), animal products (purple), primary plant products (green), and secondary plant products (blue)

Using the results

Data to back up other food sustainability initiatives:

Communication, education, and outreach

MENUS

• Food labels!

 Nitrogen footprint reduction goal

Food scenarios template

UNH Sustainability Institute

simap@unh.edu

Food Projections & Solutions Template

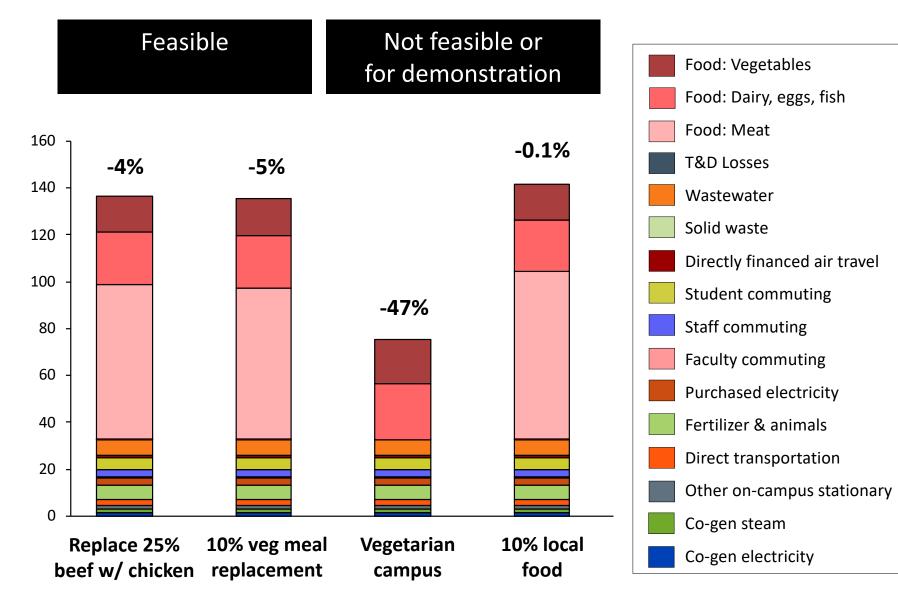
Updated: 8 June 2018

What this template provides

You can use this template to project your SIMAP carbon and nitrogen footprint results to a projection year. You can then run the following food scenarios: vegetarian meal replacement, up to 4 food category replacements, custom food replacement, and local food replacement, and diverting food waste.

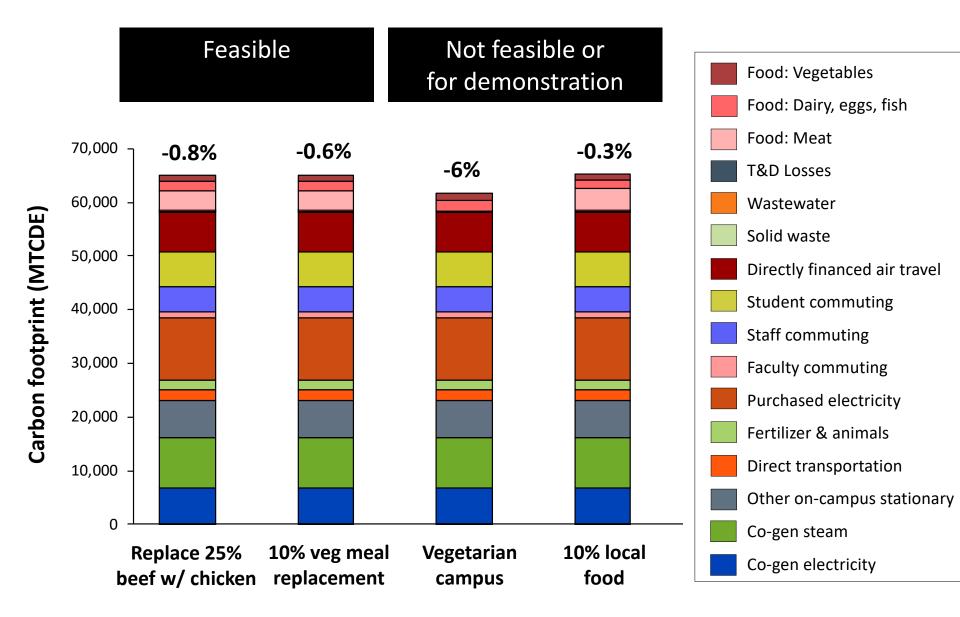
How to use this template

Enter SIMAP data tab


Copy-paste your exported data from SIMAP. This will be used for your baseline C and N footprint and food calculations. See the tab for detailed instructions.

Select projections and scenarios tab

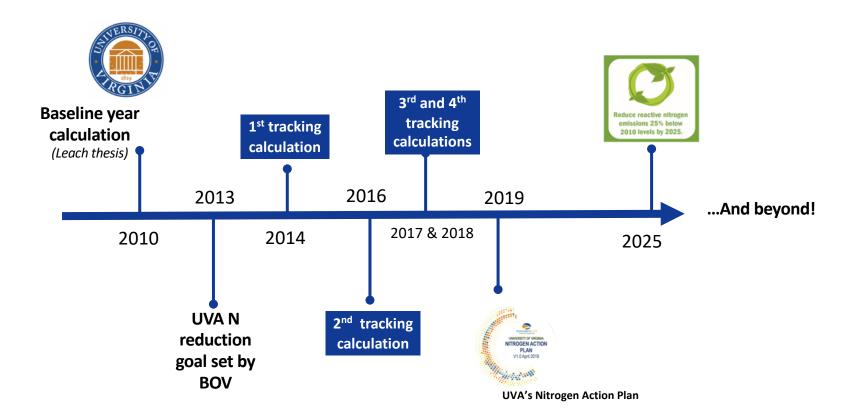
Select how you would like to project your data. There are different selections for non-food data and food data. Select your scenario input data (e.g., % vegetarian meals, % replacement of food categories).


View projections and scenarios tab

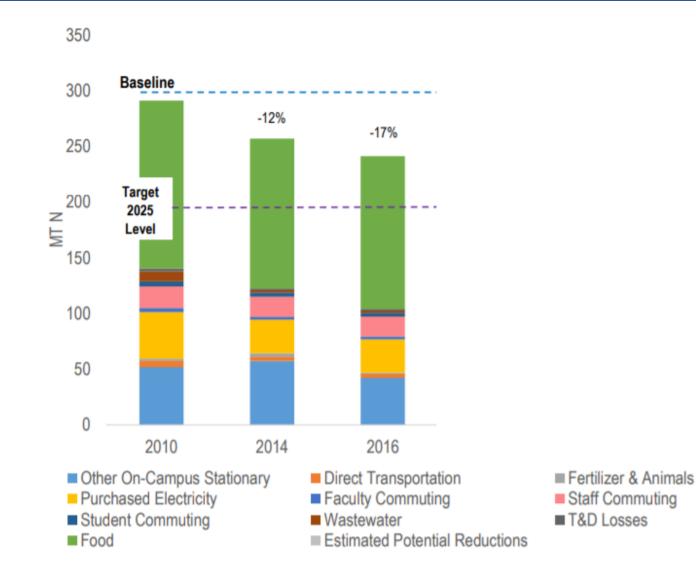
NITROGEN SCENARIOS: Food choice

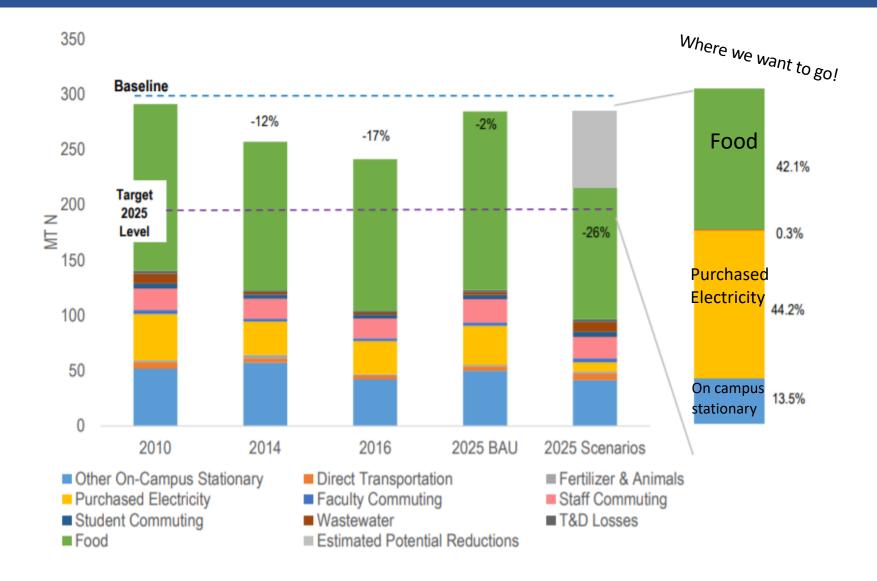
Nitrogen footprint (metric tons N)

CARBON SCENARIOS: Food choice



University of Virginia's Nitrogen Action Plan


Elizabeth (Libby) Dukes


UVA's Nitrogen Footprint Tracking, Reducing, and Goal Setting

UVA's Current Nitrogen Footprint

UVA's Nitrogen Footprint in 2025

How do we get there?

The UVA Nitrogen Action Plan!

aashe bull			
News	NEWS OPPORTUNITIES NEW RESOURCES EVENTS JOBS A		
	U Virginia Releases Nitrogen Action Plan The institution's new plan sets an official nitrogen reduction goal: reduce the university's reactive nitrogen	= sections	UVAToday
	losses by 25 percent below 2010 levels by 2025. The plan, published in May 2019, outlines changes in the food and energy sectors, including strategies such as replacing gasoline fleet vehicles for electric, encouraging plant-forward dining options in dining halls, and reducing food waste. ■ Posted Jul 29, 2019 S Air & Climate News ★ AASHE Air & Climate Resources		EADS INSTITUTIONS IN MEASURIN US NITROGEN FOOTPRINTS

Food: Sustainable Dining Initiatives

- Plant Forward Fridays
- Castle dining facility converted from burger place to plant forward menu
- No-bull burgers in 3 retail locations and 1 dining hall
- Blended burgers (80% beef 20% mushrooms) served in all dining halls
- Education on environmental impacts of highprotein diets

Food: Plant Forward Fridays

U.Va. Dining Launches New Plant-Forward Program

U.Va. Dining responds to students desires for healthier and more sustainable dining options with new programming

By Ashley Ewing | 02/06/2019

Projected 4% N footprint reduction

Food: The Castle

NEWS & TRENDS > COLLEGES & UNIVERSITIES

Sustainability is king at UVA's new Castle

A fresh menu, a chilled-out atmosphere and a 3 Star Green Restaurant certification are crown jewels in a move that took the Castle from late-night burger joint to a fortress of modern mindful eating.

Tara Fitzpatrick | Jun 27, 2019

Projected 1% N footprint reduction

Food: No-bull burgers

No-bull veggie burgers served in one residential dining hall and three retail locations!

Projected 0.5% N footprint reduction

- Implement strategies in the Nitrogen (N) Action
 Plan
- Reach our 25% N footprint reduction goal by 2025
- Continue making plans to reduce the environmental impact of our university!

Special thanks to....

- University of Virginia Dining Services:
 - Brooke Kinsey and Matt Smythe
- University of Virginia Health System Dining
 - Corey DiLuciano
- University of Virginia Facilities Management
- University of Virginia Office for Sustainability
 - Andrea Trimble and Andrew Pettit
- University of Virginia Nitrogen Working Group
 - Rachel McGill, Alicia Zheng, and Jim Galloway

Summary

Why food matters

- Modern agriculture provides us with tremendous benefits
- ... But we have to address many challenges to ensure that it is sustainable and just

How SIMAP can help

- Carbon and nitrogen footprint of your food purchases
- Outreach & education
- Track reductions over time

www.unhsimap.org

Questions?

SUSTAINABILITY INDICATOR MANAGEMENT & ANALYSIS PLATFORM

www.unhsimap.org

Contact: simap@unh.edu